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within the noisy blurred scene data (D1). The reconstructed
object, G(x), which has been super-resolved, is then output
as shown in module 70.

The background subtraction method for super-resolving
the object of interest in D1 is detailed in FIG. 11. In FIG. 11
the noisy blurred scene data D1 containing the object to be
reconstructed is used as input, with a low-pass filter (block
600) applied to remove high spatial frequency noise from
the D1 data as shown by equation 11(a). In equation 11(a)
the transfer function h,(x) represents the Fourier transform
of the binotf array. The binotf array specifies the non-zero
spatial frequency of the otf located in the fourier plane. FIG.
12 shows the fourier transform of an image depicting binotf
to ensure no higher frequencies in the spectrum exist.

As shown in FIG. 12, the values of binotf are 1 up to the
optical system cutoff value f, and 0 beyond that cutoff. The
low pass filtered data D(x) in FIG. 11 is then multiplied
pixel by pixel with the bin map array (binmap (x)) to
separate out a first estimate of the reconstructed object from
the filtered D1 data, as shown in equation 11(b) in module
610. The binmap array specifies the region in the scene
containing the object to be super-resolved. The binmap has
array elements equal to 1 where the object of interest is
located and array elements equal to 0 everywhere else. FIG.
13 shows a pictorial representation of the binmap array,
where the binmap window (40) holds a region containing an
object of interest (20) consisting of pixels equal to one in the
region containing the object and pixels equal to zero every-
where else (30).

The next step in FIG. 11 is to replace the reconstructed
background scene pixels, I(x), by the estimated recon-
structed object pixels, Dy(x), at object positions specified by
the binmap (40), as shown in module 620. Equation 11©
provides the mathematical formula for this replacement,
creating a reconstructed object array S(x). S(x) is then
convolved with the optical system PSF (h,) to blur the
combination of the reconstructed background and the esti-
mated reconstructed object as shown in equation 11(d) of
module 630. A new array, N(X), is then created in block 640
by dividing, on a pixel by pixel basis, the filtered D1 scene
array (D) by the blurred combination of the reconstructed
background and the estimated reconstructed object (1)) as
shown in equation 11(¢) of module 640. The new array,
N(x), is then correlated with the optical system PSF (h,) and
multiplied, for each pixel specified by binmap, by the
current estimate of the reconstructed object. Equation 11(f)
of module 650 is then used to determine K(x), the new
estimate of the reconstructed object.

After K(x) has been calculated a check is made, as shown
in module 660, to determine whether the specified number
of iterations have been completed. If more iterations are
needed the current estimate of the reconstructed object is
replaced by the new estimate as shown by equation 11(g) of
module 670. Steps 620-660 are repeated until the specified
number of iterations have been accomplished. When this
happens the latest estimate of the reconstructed objects is
taken to be the reconstructed object; that is G(x) is set equal
to K(x), as shown in module 680 (equation 11H).

In FIG. 9B the reconstructed object G(xX) is the output of
module 70. This G(x) is in fact the desired super-resolved
object. Note that the above description of the super-
resolution method as shown in FIG. 11 is set up to handle
non-thinned apertures. For thinned aperture systems, step
630 of FIG. 11 (in which the new scene I,(x) is blurred again
using the optical system’s PSF) may be excluded.

Three examples of applying the background reconstruc-
tion approach using the above-described non-linear tech-
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nique to obtain super-resolution are illustrated in FIGS.
14-16. FIGS. 14A-D represent simulated bar target charts
where FIG. 14A represents the truth scene illustrated by a
series of alternating dark and light bands within a back-
ground. FIG. 14B represents the blurred image of the truth
scene (through a small aperture), and FIGS. 14C and 14D
represent the reconstructed images using the non-linear
background reconstruction method previously described.
FIGS. 15A-D are associated respectively with FIGS.
14A-D and represent a one-dimensional Fourier transform
cut through each of the “scenes”, thus clearly illustrating the
spatial frequencies that have been restored to the recon-
structed image.

FIGS. 16 A—C represent the application of the non-linear
method to a thinned aperture system. In this case, the thinned
aperture configuration is an annulus. It should be noted,
however, that the method may be utilized with any thinned
aperture design. FIG. 16 A represents a computer generated
ground scene (i.e. the truth scene). The blurred image of that
scene is then depicted in FIG. 16B, while the final
reconstructed, super-resolved image is shown in FIG. 16C.

FIGS. 17A—C represent images of figures taken from a
CCD camera. FIG. 17A represents the truth scene (a picture
of a toy spacemen), while FIG. 17B shows the blurred image
of the scene (observed through a small aperture). FIG. 17C
represents the reconstructed image, and FIG. 17D shows the
magnitude of the difference of the two-dimensional Fourier
transform between the truth scene in FIG. 17A and the
blurred image of FIG. 17B. FIG. 17E shows the difference
between the truth scene and the first stage of reconstruction
(i.e. the deconvolved figure), while FIG. 17F shows the
magnitude of the difference of the two-dimensional Fourier
transform and the truth scene for the reconstructed, super
resolved image. Note that black indicates a O difference,
which is the desired result, while white indicates a maximum
difference. As one can see from a comparison of FIGS. 17D,
E and F, the radius of FIG. 17D corresponds to the cutoff of
the optical system or camera, and the deconvolved image
frequencies in FIG. 17E have been enhanced inside the
cutoff but remain zero outside the cutoff. The super-resolved
figure in FIG. 17F has further improved the image by
restoring frequencies outside the cutoff as can be shown by
the increased blackness of the figure with respect to either
FIGS. 17D or 17E. This is a clear demonstration that super
resolution has occurred. FIGS. 18A-B represent a graphical
illustration of the truth, blurred, and reconstructed super-
resolved images for SNR values of 50 and 100 respectively.
FIGS. 18A and B show that the non-linearly reconstructed
images closely parallel the truth images.

In an alternative embodiment, the reconstruction
approach using a linear transformed method is now
described. When reconstructing either the background scene
or the localized object, the imaging system is mathemati-
cally characterized by a linear operator represented by a
matrix. To restore either a background scene or the localized
object, an inverse imaging matrix corresponding to the
inverse operator must be constructed. However, due to the
existence of system noise, applying the inverse imaging
matrix to the image is intrinsically unstable and results in a
poorly reconstructed image. However by applying a con-
strained least squares procedure such as Tikhonov
regularization, a regularized pseudo-inverse (RPI) matrix
may be generated. Zero-order Tikhonov regularization is
preferably used, although higher order Tikhonov regulariza-
tion may sometimes give better results. The details of this
are not described here, as Tikhonov regularization is well-
known in the art.



